Comment Number	Page Number	Line, Figure, or Table No.	Commentor	Comment	
1	WQ	Table 1-WQ	Stephen P	Under "Metals & Toxic Elements", you may want to add the trace	P
	Program,	Parameters 0f	Haves BSO	metals arsenic, chromium, and lead to the table since they appear	F .
	p.8	Concern to	111219(05, 12)0(0)	to be more of a concern in drinking water than copper and zinc]
) P.O	Beneficial		which were listed. The Department of Health Services has	
	·	Uses		established Primary Drinking Water Standards (based on human	
·		0505		health concerns) for arsenic, chromium, and lead (as well as	ì
				cadmium and mercury which were listed in the table). DHS has	
				established Secondary Drinking Water Standards (based on taste,	
				odor, and appearance concerns only) for copper and zinc. I	
·				recognize that Compliance water quality monitoring detects these	
				trace metals at levels far (ten to a hundred fold) below the	[
. !				applicable Standard because of the insolubility of many of the	
				salts of these trace metals in water. However, this relative]
				insolubility can make these trace metals (especially lead) a hazard	
				in sediment. As stated on p. 10, "achievement of numerical	
				water quality objectives alone may not be enough to ensure good	
				water quality for ecosystem beneficial uses."	
2	WQ	Table 1-WQ	Stephen P.	Under "Organics/Pesticides", the triazine herbicide simazine	
!	Program,	Parameters of	Hayes, ESO	should be considered for inclusion. Simazine has been used	
*	p.8	Concern to		within the drainages to the Bay-Delta System in the spring to	
		Beneficial		control broadleaf weeds and annual grasses in berry fruit,	
,		Uses		vegetable, and ornamental crops, and in orchards and vineyards.	
				This pre-emergence herbicide has occasionally been detected	
				through Compliance water quality monitoring at levels above	
		·		EPA's Lifetime Health Advisory of 1.0 μg/L for simazine in	
	}			drinking water.	

			1	·	
	WQ	Table 3-	Stephen P.	Renumber as Table 2" Need to emphasize the "Mine Drainage"	
3	Program,	Summary of	Hayes,ESO	problem within the Delta as primarily a sediment problem rather	
	p.9	Water		than as a water column problem. Compliance water quality	
}		Quality		monitoring monitoring stations on the Sacramento and San	
		Program		Joaquin Rivers show low levels of trace metals that are within the	
		Actions by		range of values measured at the internal Delta stations. Regulated	
		Region		point discharges to the Bay-Delta System from more nearby	
				sources could be a more current and significant source for trace	
				metals in the water column.	
4	WQ	"mercury"	Stephen P.	Mercury has not been detected in Compliance water quality	
	Program,	discussion	Hayes, ESO	monitoring trace metal samples because many mercury salts are	
	pp.8-9			highly insoluble in water, except under anaerobic conditions.	
		-		Therefore, if mercury in the water column is to be studied,	
			·	possibly concentrate the studies in areas of minimal tidal mixing,	
				high BOD, etc. Because of the insolubility of the salts of	
				mercury, this trace metal can build up within the sediment.	
	,			Therefore sediment and aquatic organism tissue burden studies	1
				should also be conducted (especially on bottom feeders that may	
				directly or indirectly ingest mercury laden sediment).	
				, , , , , , , , , , , , , , , , , , , ,	
5	WQ	Discussion of	Stephen P.	Good discussion!!! This discussion would support the inclusion	
	Program,	"Numerical	Hayes, ESO	of the items I recommended in my previous comments.	
	p.10	Water			
	_ ^	Quality			
		Objectives			
		(upper right			
		quarter of	·		
		page)			
1	1	r-0-/	ı	1	, ,

	WQ	Action 6	Stephen P.	A seasonal non-point source of some of the nutrients to the Delta	
. 6	Program,		Hayes, ESO	region is the winter/spring flush of nutrients from the drainages to	
	p. 23			the Delta. Some of these nutrients (from non-agricultural	
				sources) would not be accounted for in the prescribed procedures	
				to control nutrient input through source control of agricultural	
		, , , , , , , , , , , , , , , , , , , ,		surface drainage.	
	WQ	Mine	Stephen P.	Toxic effects of metals contained in the sediment, not waters of	
7	Program,	Drainage,	Hayes, ESO	the Delta and Sacramento River regions. Text should be revised	
- '	p. 51	first		to reflect this.	
		paragraph			
	WQ	Whole	Stephen P.	Report (p.8, Table 1, under "Other") mentions "dissolved oxygen"	
8	Program	Report	Hayes, ESO	as a parameter of concern, yet does not discuss it's impact in	
		-		detail within the Bay-Delta System (especially in the eastern	
				Stockton Ship Channel where levels can drop to < 5.0 mg/L in the	
				late summer/early fall). BOD loadings to the System (especially	
	1			in the lower San Joaquin River) should also be considered and	
				discussed.	
1					
	1				

Comment Number	Page Number	Line, Figure, or Table No.	Commentor	Comment	V
1	ERPP Vol 1, 13	Table 1, Last Line	S. Spear	Move 'Stressors' heading to top page 14.	_
2	ERPP Vol 1, 14	Table 1, Mid-page	S. Spaar	'Gravel Mining' - This vision should probably include reducing predation on salmonid smolts and improving the salmonid migratory pathways. These are adversely effected by instream gravel mining, as is water temperature. As written, it appears that only spawning habitat and floodplain is impacted by mining.	
3	ERPP Vol 1, 15	Table 1, Mid-page	S. Spaar	'Artificial Fish Propagation' - This stressor appears to lack a stated vision. The vision indicates it is closely linked to other visions, but does not explain what the vision is for this stressor.	
4	ERPP Vol 1, 20	Table 4	S. Spaar	'Natural Sediment Supply' - The San Joaquin River (12) is not included, yet the Sacramento River is. On p. 29 (col. 2, para. 2), the San Joaquin River is noted as an area where ecosystems have been significantly modified by sediment transport and deposition processes. Actions are also proposed for possible meander belts on the SJ River.	
				Is there an explanation somewhere of why the SJ River is not marked on the table? If so, might include a note with the table as to where this could be found.	
				'Stream Meander' - Similar comment for the Eastside Delta Tributaries (11). Is stream meander not an ecosystem process of concern for the Mokelumne and Consumnes rivers, and other	

				streams?	
5	ERPP Vol 1, 130	Table 10	S. Spaar	'White and Green Sturgeon' - No programmatic actions are proposed for these species on the San Joaquin River? Might include the reasoning in the species section p. 146-148.	
6	ERRP Vol 2, 447	SJRMP, last sentence	Dale Hoffma- Floerke	The SJRMP is not being managed by any particular agency.	
				·	